
1

Graphite SOS Fund Audit Fix Log
Fixes from Graphite team and reaction of ROS (in bold and italic) on status of fixes

Version 1.0, August 13th 2018

Identified Vulnerabilities

MGR-001: Potential Integer Overflow in Memory Allocator (Elevated)

Fixed in c0e27eb refactored in 7440136

Status: Verified as fixed

MGR-002: Graphite Builds With the Stack Protector Disabled (Moderate)

Fixed in eec9fe3

Status: Verified as fixed

MGR-003: Graphite/src/Segment.cpp Constructor Possible Null Pointer Dereference
(Moderate)

Fixed in 845127

Status: Verified as fixed

MGR-004: Graphite/src/Pass.cpp CollisionShift NULL Pointer Dereference & Integer

Overflow (Moderate)

The presence of m_collisions is tested in the calling function Pass::runGraphite with:

if (!collisions || !m.slotMap().segment.hasCollisionInfo())
 return true;
So no action. In addition this covers the other unchecked instances of calls to collisionInfo.

Analysis results in no action

Status: Verified

MGR-005: Graphite/src/inc/List.h Possible Integer Overflow (Moderate)

distance() returns a signed integer by design since it's intended to be compatible with the
standard C++ vector class. It is up to the callers to ensure that the value is +ve where
required. In the case of uses in List.h the callers would fail on the same inputs for other
reasons and provide the same guarantees and limitations as the std library versions.

Analysis results in no action

Status: Verified

https://github.com/sillsdev/graphite-security/commit/c0e27ebd849b423aab3929856bcc8450904a8b57
https://github.com/sillsdev/graphite-security/commit/74401362531b7df92e66c8ec5e572e2ca8d0ce29
https://github.com/sillsdev/graphite-security/commit/eec9fe38ce2127b42ba75c904fc65d3a6b48f28e
https://github.com/sillsdev/graphite-security/commit/845127452d11fa4a7fa104c72d6f45c19fbfc922

2

MGR-006: Graphite/src/inc/Rule.h Slotmap::operator[] Does Not Check Bounds
(Moderate)

This is by design as slot map is used in performance sensitive code, and follows standard
practice for STL C++ collections. All uses should (and are the best of my knowledge)
protected by checks occurring immediately before the operator calls or are calling with known
safe indexes e.g.[0] or [-1].

Analysis results in no action

Status: Verified

MGR-007: Graphite/src/Font.cpp Font::Font() Division-related FPE (Moderate)

This check in Face::readGlyphs()

 if (e.test(!m_pGlyphFaceCache, E_OUTOFMEM)
 || e.test(m_pGlyphFaceCache->numGlyphs() == 0, E_NOGLYPHS)
 || e.test(m_pGlyphFaceCache->unitsPerEm() == 0, E_BADUPEM))
 {
 return error(e);
 }
Happens early enough that it's not possible for a upem of 0 to get through to the Font class
constructor.

The remaining case of a upem == 0xffff (since upem is unsigned) and a ppm == INT_MIN is
possible only when a crafted font is used in combination with an application calling
gr_make_font* calls with a ppm of INT_MIN. To mitigate this commit 99cf79c checks ppm is
never <= 0 (a nonsensical value anyway).
Is zero every a legitimate value for pixels per em?

Status: Verified as fixed

MGR-008: Graphite/src/Font.cpp M_advances NULL Pointer Dereferences (Moderate)

Fixed in 6477dce

Status: Verified as fixed

MGR-009: Floating Point Exception in VM (Moderate)

Fixed in 924677b

Status: Verified as fixed

MGR-010: Possible NULL Pointer Dereference in ShiftCollider::mergeSlot() (Moderate)

Fixed as part of MGR-003. Fixed in 64cf8dc

Status: Verified as fixed

https://github.com/sillsdev/graphite-security/commit/6477dce6a332d069904de29c22b0650f2acdc6cf
https://github.com/sillsdev/graphite-security/commit/924677bfbf036ea24e7f688a14f4c82898b15cf8
https://github.com/sillsdev/graphite-security/commit/64cf8dc3db0b1bad56ab9b2432ed2eaaf00934d7

3

MGR-011: Potential Crash in FileFace::get_table_fn() (Low)

Fixed in ce22348

Status: Verified as fixed

MGR-012: Potential Use After Free When Logging (Low)

Fixed in df141bf

Status: Verified as fixed

MGR-013: The LZ4 Parser Does Not Pass the Tests From Liblz4 (Low)

Fixed a bug in lz4::decompressor b10fb35 preventing it from decompressing the last literal
block when it started less than 8 bytes from the end of src buffer. This should fix regeneration
mismatch errors. Our decompressor places no upper limits on the input block so it will never
pass input too large tests by design.

Status: Verified as fixed

MGR-014: Incomplete Sanity Check When Looking up Glyphs (Low)

Restructured the test in GlyfLookup and added a check in CheckTable. The test in
GlyfLookup is now:

 if (nGlyfOffset + pByte < pByte || nGlyfOffset >= nTableLen - sizeof(Sfnt::Glyph))
 return NULL;
with a check in CheckTable that nTableLen >= sizeof(Sfnt::Glyph) s.t. nTableLen -
sizeof(Sfnt::Glyph) therefore is always positive.

Fixed in a7c4a05

Status: Verified as fixed

MGR-015: Graphite/src/inc/Compression.h::overrun_copy Integer Overflow Leads to
Uninitialized Buffer (Low)

Checked at call site to ensure e does not overflow (presumably we're talking about (e =
s+n)).

Analysis results in no action

Status: Verified as no error

https://github.com/sillsdev/graphite-security/commit/ce223483f3f753d213fa809c3392e5128f5743b3
https://github.com/sillsdev/graphite-security/commit/df141bf1b78c178f896d91552f1131cca8bbdb2a
https://github.com/sillsdev/graphite-security/commit/b10fb35d24ad1ca684ff55d66b4dbbb576515e49
https://github.com/sillsdev/graphite-security/commit/a7c4a05988332716b8fe88ade5f55c8683173ca3

4

MGR-016: Graphite/src/inc/Compression.h::overrun_copy Possible Buffer Overflow
(Low)

The observed behaviour is intentional (hence the name overrun_copy) and it is up to the call
sites to ensure any invocation is safe, I'm not sure given the checks occur immediately
before the calls with no additional processing or function calls what could change between
the check and use.

Analysis results in no action

Status: Verified

MGR-017: Graphite/src/Segment.cpp linkClusters Null Pointer Dereference (Low)

Fixed in 64cf8dc

Status: Verified

MGR-018: Graphite/src/inc/Sparse.h Sparse(x,y) Code Smell (Low)

Change committed to master since not a security bug per se. Fixed in 2f0d83b in public
master

Status: Verified as fixed

MGR-019: Graphite/src/inc/FeatureMap.h Possible NULL Pointer Dereference (Low)

Fixed in 77da521

Status: Verified as fixed

MGR-020: Graphite/src/Code.cpp Machine::Code::Code() Constructor Possible

Memory Leak (Low)

Fixed in f28331a

Status: Verified as fixed

MGR-021: Graphite/src/inc/List.h Possible Integer/memory Overflow (Low)

Fixed in 712e47d

Status: Verified as fixed

https://github.com/sillsdev/graphite-security/commit/64cf8dc3db0b1bad56ab9b2432ed2eaaf00934d7
https://github.com/silnrsi/graphite/commit/2f0d83b915b2b3d23b6e6620ff05605b807090c0
https://github.com/sillsdev/graphite-security/commit/77da521d3573d10b50eea64f40594e5b0957c214
https://github.com/sillsdev/graphite-security/commit/f28331acb0f1f90ed77e9b588d90c346ce12960f
https://github.com/sillsdev/graphite-security/commit/712e47d9deed6637fa1f407e83a85e50e2b8544a

