
Bugzilla Anthropology
Preliminary Results

 By Martin Best

Agenda

● Intro

● Bug Life Cycle

● Rapid Release Impact

● Drilling Down

● Triage

● Going Forward

Research Approach

● Interviews
○ 1 hour long
○ Results in 6-8 pages of dense point form

summaries

● Metrics that provide trending

● How Bugzilla is being used?
○ What is working and what is not?
○ Are there any useful tools or hacks?
○ How are bugs moving through their life

cycle?

Status

● Have completed 10 hours of interviews,
including community, transcripts posted

● Have discovered existing tools that
allow for the monitoring of high level trends

● Working with metrics to surface more
trending information based on interview
results

● Very large amount of detailed information
gathered, too much to provide a useful summary
in 30 mins.

Bug Life Cycle

Rapid Release Impact

Changes in Rapid Release

● Development, Aurora, and Beta all overlap

● 6 week development time frame for each
release in total

● Increases the requirement to stay on top
of bug volume to avoid build up of "must
be fixed" bugs

Drilling Down

Why is the number of issues closed so flat?

● With 47 new staff added since January to
Firefox and Core, it is surprising that this
number is staying in the same range

● Is it a data error?
● Is it a seasonal trend?
● Is there friction due to new hires?
● Is there a bottle neck somewhere in the

bug life cycle?

Interview Data

● Search interview transcripts looking for trends
that might indicate a bottle neck

● Focused in on the review queues

● Reviewed how different people are approaching
the process

● Reviewed the differences in perspective
between the reviewers and those submitting
patches

 Review Process Interview Summary

● Review process seems to cause a fair amount
of concern in how it is currently being done

● Having to add a name manually focuses a lot of
bugs on a few reviewers

● Wide range of response time makes it hard to
predict outcome

● So far all reviewers interviewed feel that getting
a review turned around in 24 to 48 hours is
important

Individual Results Average

Results
● How responsive is your team when an internal bug is created (1 slow, 10

fast)?

● How responsive are other teams to bugs you submit (1 slow, 10 fast)?

● Review process turn around (1 slow, 10 fast)?

● Approval process turn around time (1 slow, 10 fast)?

1
2
3
4

Next Steps

● Although there is much data to suggest there is an
issue, no conclusive evidence has yet surfaced

● Metrics Team has been tracking data that is expected
to give us a macro view of how the different review
queues are changing over time

● Currently there is no interface for seeing this
particular set of data

● Working with the Metric Team to get this information
visualized

Triage

What Activities Are Included in Triage?

1. Separate out service requests
2. Clarification
3. Correct Component
4. Regression Window
5. Repro Steps
6. Severity (fix or not)
7. Assign or add to a component cue

Interview Statistics Relating to Triage

● On a scale of 1 to 10, how confident are you
that your group knows about every bug that
is important?

● (1 no confidence, 10 total awareness)

Individual Results Average

Comments From Those That Answered 1

● 100% that there are untracked bugs. Anytime you go
through all the bugs, you find, "Wow, that’s really
important and everyone missed it." This was recently
reinforced by the graphics.

● Graphics currently has about 2500 bugs. No one is
aware of the full range of issues in that list due to
volume. This is the list that is properly filed and does
not included concerns about issues yet triage.

Graphics Bug Kill Day

● Started from oldest and started closing bugs

● 1/6 where considered actionable

● 1 in 40 had patches that could be landed

● Older bugs have a higher likelihood no longer
being relevant

Triage in Firefox and Core

● Triage done primarily by Engineers

● Triage often done by watching new submit
bug mail

● If initial wave of bug mail is missed by all
developers of that component, there is a
good chance that a bug will be lost unless
a reporter calls attention to it

Challenges to Firefox and Core Triage

● Several managers have talked about the
difficulty of excessively large queues
making it hard to stay aware of important
bugs

● When asked at what volume these issues
becomes a problem, numbers from 250-
800 have been suggested

● Intend to start drilling into this further with
follow up questions

Going Forward

Finishing Research

● We are currently targeting a total of 20
interviews and will re-evaluate if more are
needed

● Develop web based reports that will allow
for trend tracking on more points along the
bug life cycle

● Targeting End of January to have research

completed and move towards developing
solutions

Questions We Need People Thinking About
● How will we move past research and start

using what we have learned?

● Are there areas of the bug life cycle that
are not being studied?

● Is our interpretation of the data valid?

● What else do we need to look into?

Slides Removed

How is Triage Being Done

● Three different approaches to triage

○ Triage in a component of Firefox and
Core

○ Triage in General

○ Triage in Fennec

Triage in Fennec

● Responsibility divided between QA and Engineers

● QA does a first pass on the bugs looking for
duplicates, setting tracking flags, checking that it is in
the right component, make sure it is important

● Engineers take over and handle repro steps,
regression window, and assignment

● QA will set tracking flags to let Engineers know a bug
is ready, and Engineers will set an assistance flag to
let QA know they need a hand

Proposed Triage Solutions Mentioned During
Interviews

● Creation of a next step system in Bugzilla
(suggested by Jesse Ruderman on his blog)

● Better monitoring of trends

● Bugkill days to keep bug counts reasonable

● Internal triage group to help assist and coordinate
community

● Better dashboards to help improve bug visibility
rather than relying on bug email

Triage in General

● Primarily done by community

● Community starts at the top of the list and tries
to move bugs forward in the triage process

● Will sometimes create searches to reduce the
number of bugs in a list

● Attempt to adhere to the rules of each
component when it comes to use of meta data

Challenges to Triage General

● No way to know what stage of the triage
process a bug is in

● Hard to figure out what a bug needs without
reading the comments

● When a bug is triaged it is often not picked up
by a developer if left in General

● No clear internal owner of General

● When asked about general, developers
assumed someone else is handling that

Scope of This Presentation

● Data gathered via interviews is considerable
and one could easily spend 30 minutes one
of the many areas being studied

● Will attempt to give some insight into several
key areas we are drilling into currently

● Data will be provided in more detail in the
coming days and weeks

Monitoring

● The key points on the bug life cycle
represent a point where a new person will be
introduced to the bug

● These points should be monitored for
backlogs

● Many stages are traceable and metrics has
the data

Macro Statistics Tool Find

● One of the first
discoveries was the
very useful QA
Dashboard

● Much of the
macro data presented
has come from this
tool

● Not 100% functional
due to lack of use

Interview Statistics

● Several numerical range questions where
asked during interviews to help find
potential bottle necks

● These included
○ Speed of response to submitted bugs
○ Speed of review and approval process
○ How confident they where that they

where aware of everything they should
be

Questions Relating to Speed

1. How responsive is your team when an

internal bug is created (1 slow, 10 fast)?

2. How responsive are other teams to bugs
you submit (1 slow, 10 fast)?

3. Review process turn around
(1 slow, 10 fast)?

4. Approval process turn around time
(1 slow, 10 fast)?

